Towards Fast Mixed-integer Quadratic Programming Algorithms for Real-time Loco-manipulation Control

Xuan Lin RoMeLa(Robotics and Mechanisms Laboratory)

Table of Content

SCALER: Versatile Multi-Limbed Robot for Free-Climbing in Extreme Terrains

Yusuke Tanaka¹, Yuki Shirai¹, Alexander Schperberg¹, Xuan Lin¹, and Dennis Hong¹

Generalized Benders Decomposition with Continual Learning for Hybrid Model Predictive Control in Dynamic Environment

 $Xuan \ Lin^{\dagger}$

SCALER: Versatile Multi-Limbed Robot for Free-Climbing in Extreme Terrains

Climbing robots

Why interested in climbing?

- If legged robots can climb on the walls, it significantly extend their capability

- Climbing requires dedicated grippers for various surfaces, and high-performance power grasps to move the robot itself

NASA LEMUR robot climbing up a cliff in Titus Canyon and scan for ancient fossils

Boston Dynamics RiSE robot performing an untethered climb of a multistory building

SiLVIA

SiLVIA (Six-Legged Vehicle with Intelligent Articulation)

Investigate the compliance model and its usage in motion planning [1]

- IROS best paper on search and rescue robots

[1] Lin, Xuan, Jingwen Zhang, Junjie Shen, Gabriel Fernandez, and Dennis W. Hong. "Optimization based motion planning for multi-limbed vertical climbing robots." In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1918-1925. IEEE, 2019.

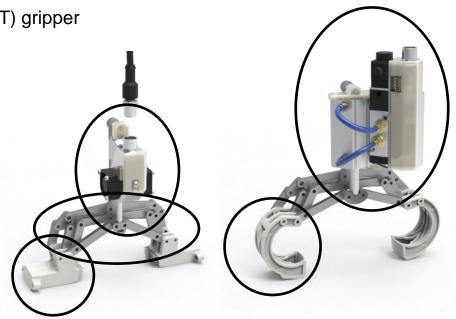
SCALER: Spine-enhanced Climbing Autonomous Limbed Exploration Robot

- 4-legged, walking 13+6 DoF, climbing 29+6 DoF
- Position control servo motors in pairs
- Max torque 9 Nm
- Leg length walking 0.4 m, climbing 0.55 m
- Total weight walking 6.3 kg, climbing 8.8 kg
- IMU, encoder, FT sensor, vision
- Extra DoF inside body to enlarge workspace

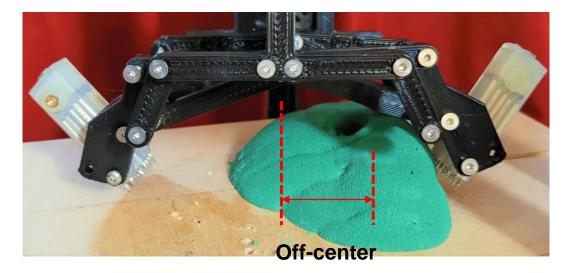
SCALER uses Grasping Onto Any Terrain (GOAT) gripper

Features of GOAT gripper

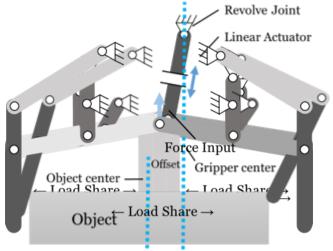
- Spine array or C shaped fingers
- Whipple tree mechanism for off-axis grasping
- Electrically or pneumatically actuated
- Force control



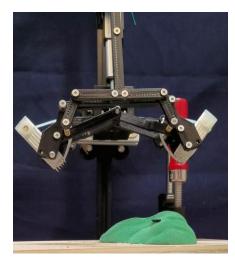
GOAT gripper needs to adapt to irregular objects

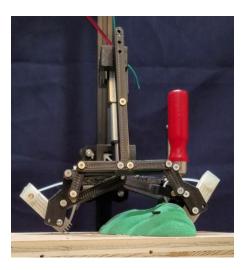


Whippletree mechanism that passively adapt to irregular objects Use bars and pins instead of restoring springs and tendons



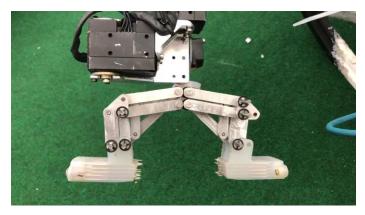
Whippletree mechanism experiments



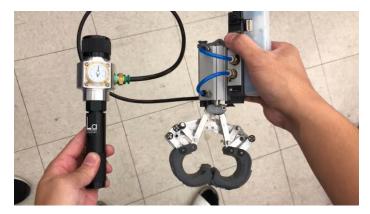


Actuation of GOAT gripper

- DC Linear actuator: 100-200N at 0.15Hz, force and position control
- CO₂ Pneumatic actuator: 200-300N at 5Hz, limited 100 grasps, no force or position control



DC Linear actuator



CO₂ Pneumatic actuator

GOAT finger design

Spine for power grasp onto rough surfaces with large area



Vertical climbing with 3.4kg weight

Inverted climbing

UCLA[©] 2023

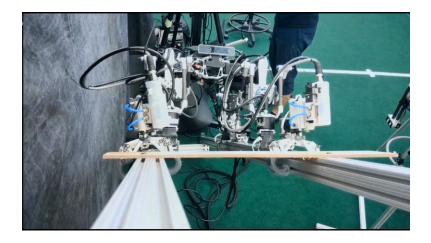
Spring

Needle

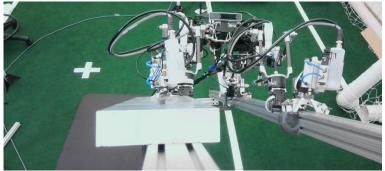
Spring Loaded Spine Cell

GOAT finger design

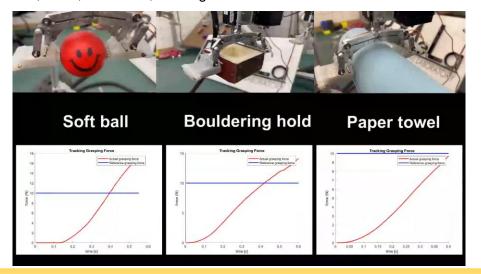
C-shape fingers grasp onto thin obstacles

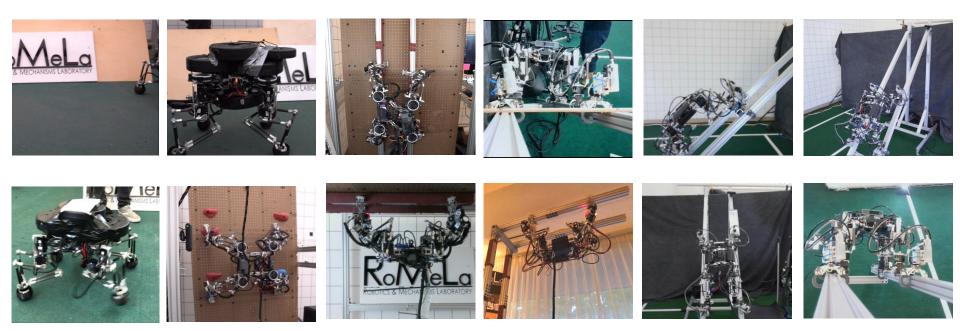






Admittance control – Please check out our paper presentation on Thursday 10:00-10:10, ThuO1T1.2 Title: Adaptive Force Controller for Contact-Rich Robotic Systems Using an Unscented Kalman Filter Authors: A Schperberg, Y Shirai, X Lin, Y Tanaka, D Hong





For this conference ...

Bipedal walking

Pull up

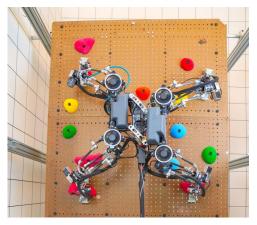
The student team

Yusuke Tanaka

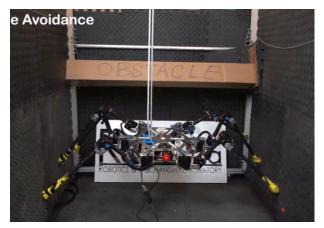
Yuki Shirai

Alexander Schperberg

Many robotics applications such as hybrid MPC requires solving mixed-integer quadratic programming (MIQPs) very fast



Contact planning



Obstacle avoidance

The faster solver we have, the quicker that robot control can address model errors and disturbances

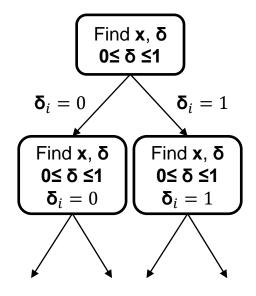
MIPs are NP-hard as in the worst case you search 2^B branches

Solving MIPs fast relies on choosing good binary branches to proceed

To achieve this:

- Commercialized solvers require heavy engineering: cutting planes, branching heuristics, presolve, multi-thread, ...

- Recent work on ML methods [1-3] collect data and train classifiers for mode sequences offline



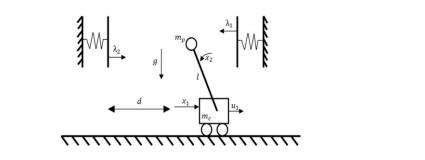
UCLA[©] 2023

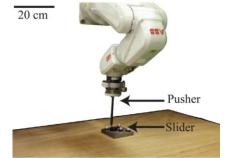
[1] Cauligi, Abhishek, Preston Culbertson, Edward Schmerling, Mac Schwager, Bartolomeo Stellato, and Marco Pavone. "Coco: Online mixed-integer control via supervised learning." *IEEE Robotics and Automation Letters* 7, no. 2 (2021

[2] Hogan, Francois R., and Alberto Rodriguez. "Reactive planar non-prehensile manipulation with hybrid model predictive control." The International Journal of Robotics Research [3] Zhu, Jia-Jie, and Georg Martius. "Fast non-parametric learning to accelerate mixed-integer programming for hybrid model predictive control." IFAC-PapersOnLine

However, learning policies requires a lot of data

In this research, we investigate how we can make data-collection and training significantly faster





Problem	Cart-pole with soft walls	Planar pushing	
Problem size	N=10, 40 binaries	N=35, 105 binaries	
Training data	90000 (Cauligi, Abhishek, et al)	100000 (Hogan, F. R., & Rodriguez, A.)	

For MIQPs:

- If mode sequence $\boldsymbol{\delta}$ is fixed, the problem is $\mathsf{QP}(\boldsymbol{\delta})$
- Parametric QP has been studied by Explicit LQR paper [1], its feasible set is convex and cost function is convex and piecewise quadratic
- Difficult to write them down analytically as there are too many active sets
- We use duality theory to build boundaries of feasible set and lower bounds of cost function

[1] Bemporad, Alberto, Manfred Morari, Vivek Dua, and Efstratios N. Pistikopoulos. "The explicit linear quadratic regulator for constrained systems." *Automatica* 38, no. 1 (2002): 3-20.

Duality theory can give lower bounds for the cost through cutting planes

We construct feasible set $V(\boldsymbol{\theta})$ for $\boldsymbol{\delta}$, and cost map $v(\boldsymbol{\theta}, \boldsymbol{\delta})$

- parameter $\boldsymbol{\theta}$ includes initial conditions

Solving MIQP takes 2 steps:

- 1. Build feasible set $V(\theta)$ and cost map $v(\theta, \delta)$
- 2. Traverse the cost map

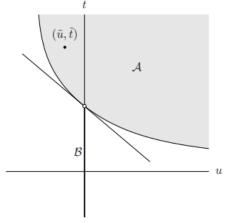


Figure 5.6, Chapter 5 Duality, Boyd, Stephen P., and Lieven Vandenberghe. *Convex optimization*

However, parametrically solve the problem still requires too many cutting planes

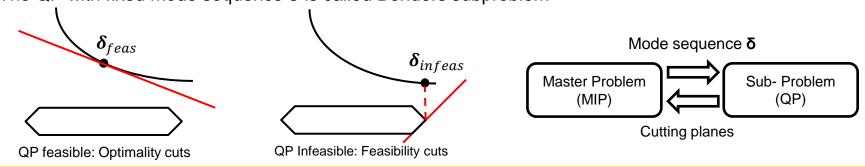
- Active sets =* extreme points and rays in dual cone ~ cutting planes

Instead, we start from an empty set of cuts, then pick up the necessary cuts "on the fly"

This technique is called Benders decomposition

*Ignore degeneracy

- The part that provides binary sequences using $V(\theta)$, $v(\theta, \delta)$ is called Benders master problem
- The QP with fixed mode sequence $\pmb{\delta}$ is called Benders subproblem



Benders decomposition is an old algorithm [1,2]

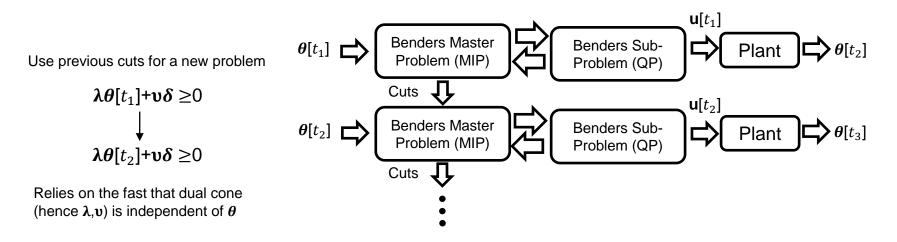
I propose a few new techniques to improve it:

- Continual learning and warm-start
- Fast cold-start using dynamic model
- Customized algorithm for master problem leveraging on sparsity of feasibility cuts

[1] J. Benders, "Partitioning procedures for solving mixed-variables programming problems" Numerische mathematik, vol. 4, no. 1, pp. 238–252, 1962.

[2] A. M. Geoffrion, "Generalized benders decomposition," Journal of optimization theory and applications, vol. 10, pp. 237–260, 1972.

Continual learning and warm-start

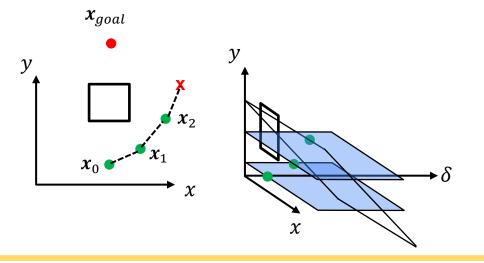


Observation: A small amount of cuts can already do decent warm-starts

Great if this procedure can happen fast (before the system goes unstable)

Fast cold-start using dynamic model

- Intuitively, the failure modes in the future time can also be informative in the current time
- This is done by shifting feasibility cuts backward in time



Customized Benders master problem solver utilizing sparsity of feasibility cuts

- A lot of master problems can be resolved in the presolve stage if Gurobi is used
- Greedy approach to solve binary variables step-by-step

$$\min \begin{bmatrix} C_1 \delta[t_1] + C_2 \delta[t_2] + C_3 \delta[t_3] \\ \text{s.t.} & \begin{bmatrix} S_{11} \delta[t_1] \ge S_{10} \\ S_{21} \delta[t_1] + S_{22} \delta[t_2] \ge S_{20} \\ S_{31} \delta[t_1] + S_{32} \delta[t_2] + S_{33} \delta[t_3] \ge S_{30} \end{bmatrix}$$

Customized Benders master problem solver utilizing sparsity of feasibility cuts

- A lot of master problems can be resolved in the presolve stage if Gurobi is used
- Greedy approach to solve binary variables step-by-step

$$\min \left[\frac{C_2 \delta[t_2]}{C_2 \delta[t_2]} + C_3 \delta[t_3] \right]$$

s. t.
$$\left[\frac{S_{22} \delta[t_2]}{S_{32} \delta[t_2]} + \frac{S_{33}}{S_{33} \delta[t_3]} \right] \ge S'_{30}$$

If $\boldsymbol{\delta}[t_2]$ becomes infeasible, go back to $\boldsymbol{\delta}[t_1]$ and find another solution

At the scale (N<20) we tested, it is effective

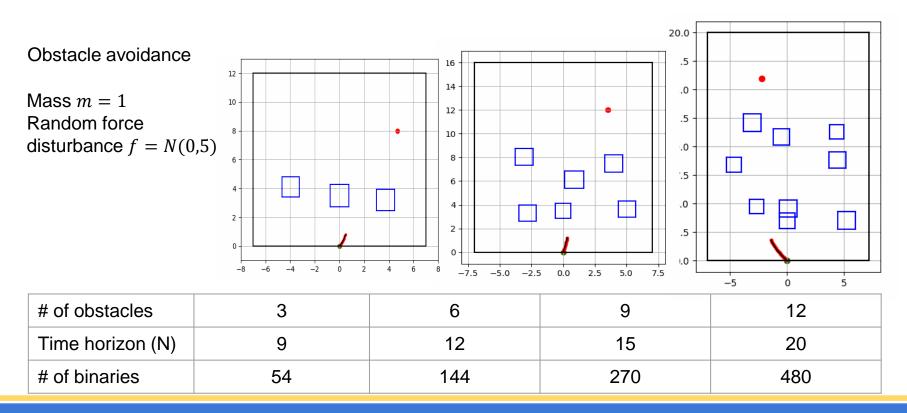
- Won't be effective for long horizon problems, or controls that require taking "detour"

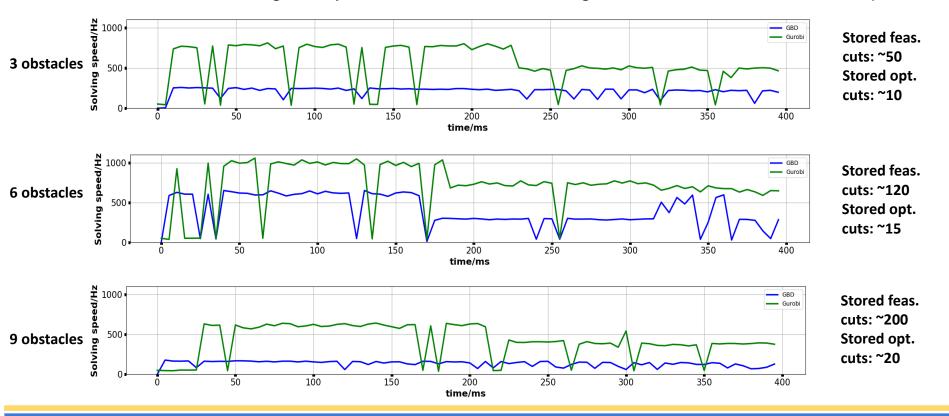
Experiments

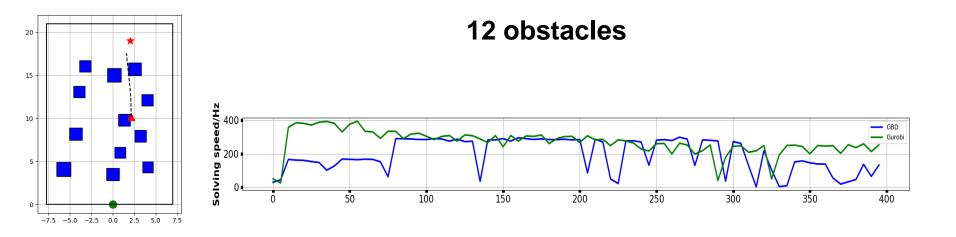
Computer: Intel Core i7-12800H × 20 laptop with 16GB memory

Proposed Benders MIQP solver: coded in Python, subproblem QPs solved by Gurobi

Benchmark: Use Gurobi 10.03 to directly solve MIQP





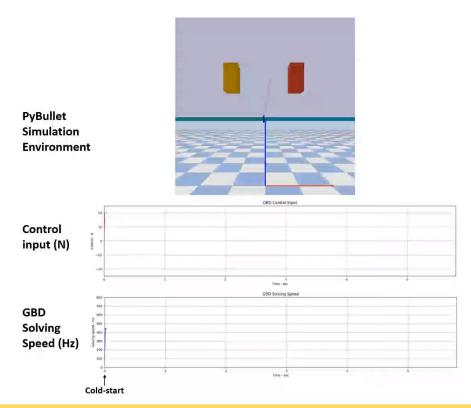


- GBD solver picks most of the feasibility cuts in the first few problems
- Better data efficiency than CoCo (Cauligi, Abhishek, et al)
- Speed competitive to Gurobi

Cart-pole with moving soft walls

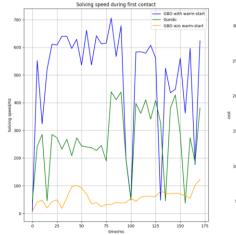
Mass cart = 1, cart = 0.4, pole length = 0.6 Random torque disturbance $\tau = N(0,8)$

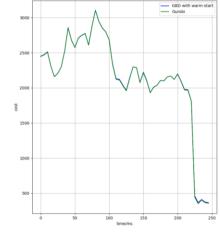
Time horizon (N)	10	15
# of binaries	20	30



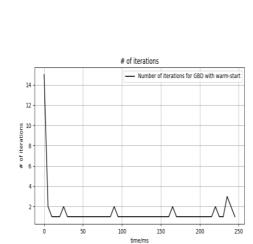
Solving speed during the first contact (N=10)

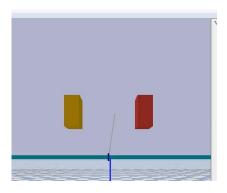
- GBD solver picks most of the feasibility cuts in the first problem
- Without warm-start, much slower

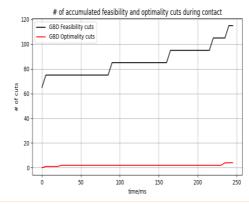




Objective function value

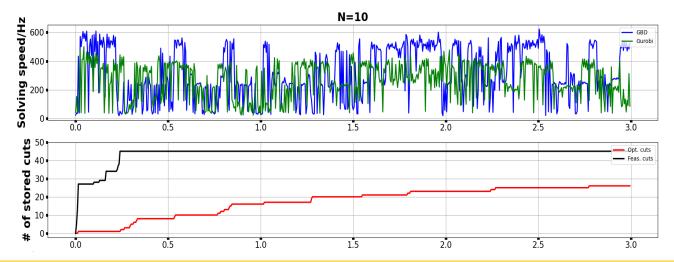




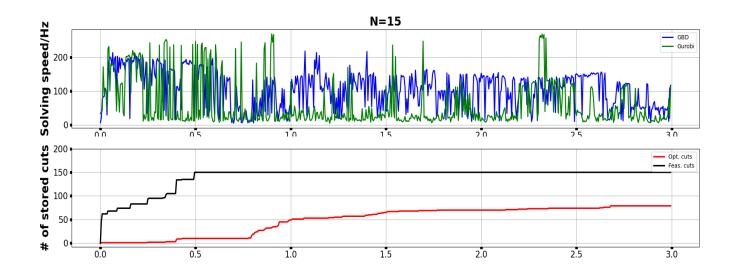


Solving speed during long time (N=10, 20 binaries)

- Overall speed 2-3 times faster than Gurobi
- Better data efficiency than CoCo (Cauligi, Abhishek, et al)



Solving speed during long time (N=15, 30 binaries)

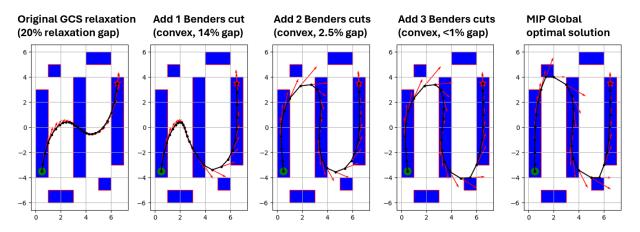


Real interesting things happen when this technique is combined with branching heuristics designed offline

- 1. Branching heuristics designed offline helps to cold-start
- 2. This technique can be used with the relaxation-based methods (e.g. GCS)
- 3. Fast learning helps generalization to out-of-distribution cases

Using Benders cuts with graph of convex sets

- Example taken from section 9.3 in your GCS paper [1])
- GCS formulation scales up well, Benders cuts quickly improve its optimality



[1] Marcucci, Tobia, et al. "Shortest paths in graphs of convex sets." arXiv preprint arXiv:2101.11565 (2021).

END

