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SCALER: Versatile Multi-Limbed Robot for Free-Climbing in

Extreme Terrains



Climbing robots
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Why interested in climbing?

- If legged robots can climb on the walls, it significantly extend their capability

- Climbing requires dedicated grippers for various surfaces, and high-performance power grasps to move 
the robot itself

NASA LEMUR robot climbing up a cliff in 

Titus Canyon and scan for ancient fossils

Boston Dynamics RiSE robot performing an 

untethered climb of a multistory building 
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SiLVIA (Six-Legged Vehicle with Intelligent Articulation)

Investigate the compliance model and its usage in motion planning [1] 

- IROS best paper on search and rescue robots
[1] Lin, Xuan, Jingwen Zhang, Junjie Shen, Gabriel Fernandez, and Dennis W. Hong. "Optimization based motion planning for multi-limbed vertical 

climbing robots." In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1918-1925. IEEE, 2019.
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SCALER: Spine-enhanced Climbing Autonomous Limbed 
Exploration Robot

● 4-legged, walking 13+6 DoF, climbing 29+6 DoF

● Position control servo motors in pairs

● Max torque 9 Nm

● Leg length walking 0.4 m, climbing 0.55 m

● Total weight walking 6.3 kg, climbing 8.8 kg

● IMU, encoder, FT sensor, vision 

● Extra DoF inside body to enlarge workspace
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SCALER uses Grasping Onto Any Terrain (GOAT) gripper

Features of GOAT gripper

- Spine array or C shaped fingers

- Whipple tree mechanism for off-axis grasping

- Electrically or pneumatically actuated

- Force control
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GOAT gripper needs to adapt to irregular objects 

Off-center
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Whippletree mechanism that passively adapt to irregular objects

Use bars and pins instead of restoring springs and tendons
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Whippletree mechanism experiments
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Actuation of GOAT gripper

- DC Linear actuator: 100-200N at 0.15Hz, force and position control

- CO2 Pneumatic actuator: 200-300N at 5Hz, limited 100 grasps, no force or position control

DC Linear actuator CO2 Pneumatic actuator
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GOAT finger design

Spine for power grasp onto rough surfaces with large area

Vertical climbing with 3.4kg weight Inverted climbing
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GOAT finger design

C-shape fingers grasp onto thin obstacles
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Admittance control – Please check out our paper presentation on Thursday 10:00-10:10, ThuO1T1.2

Title: Adaptive Force Controller for Contact-Rich Robotic Systems Using an Unscented Kalman Filter

Authors: A Schperberg, Y Shirai, X Lin, Y Tanaka, D Hong
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For this conference …

Bipedal walking Pull up
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The student team

Yusuke Tanaka Yuki Shirai Alexander Schperberg
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Fast and Continual Learning for Hybrid Control Policies using 

Generalized Benders Decomposition



UCLA© 2023

Many robotics applications such as hybrid MPC requires solving mixed-integer quadratic programming 
(MIQPs) very fast

The faster solver we have, the quicker that robot control can address model errors and disturbances

Contact planning Obstacle avoidance

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition
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MIPs are NP-hard as in the worst case you search 2𝐵 branches

Solving MIPs fast relies on choosing good binary branches to proceed

To achieve this:

- Commercialized solvers require heavy engineering: cutting planes, 
branching heuristics, presolve, multi-thread, …

- Recent work on ML methods [1-3] collect data and train classifiers for 
mode sequences offline 

Find x, δ

0≤ δ ≤1

δ𝑖 = 0 δ𝑖 = 1

Find x, δ

0≤ δ ≤1

δ𝑖 = 0

Find x, δ

0≤ δ ≤1

δ𝑖 = 1

[1] Cauligi, Abhishek, Preston Culbertson, Edward Schmerling, Mac Schwager, Bartolomeo Stellato, and Marco Pavone. "Coco: Online mixed-integer control via supervised 

learning." IEEE Robotics and Automation Letters 7, no. 2 (2021 

[2] Hogan, Francois R., and Alberto Rodriguez. "Reactive planar non-prehensile manipulation with hybrid model predictive control." The International Journal of Robotics Research

[3] Zhu, Jia-Jie, and Georg Martius. "Fast non-parametric learning to accelerate mixed-integer programming for hybrid model predictive control." IFAC-PapersOnLine

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition
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However, learning policies requires a lot of data

In this research, we investigate how we can make data-collection and training significantly faster

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition

Problem Cart-pole with soft walls Planar pushing

Problem size N=10, 40 binaries N=35, 105 binaries

Training data 90000 (Cauligi, Abhishek, et al) 100000 (Hogan, F. R., & Rodriguez, A.)
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For MIQPs:

- If mode sequence δ is fixed, the problem is QP(δ)

- Parametric QP has been studied by Explicit LQR paper [1], its feasible set is convex and cost function is 
convex and piecewise quadratic

- Difficult to write them down analytically as there are too many active sets 

- We use duality theory to build boundaries of feasible set and lower bounds of cost function

[1] Bemporad, Alberto, Manfred Morari, Vivek Dua, and Efstratios N. Pistikopoulos. "The explicit linear quadratic regulator for constrained 

systems." Automatica 38, no. 1 (2002): 3-20.

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition
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Duality theory can give lower bounds for the cost through cutting planes

We construct feasible set 𝑉(𝜽) for 𝜹, and cost map v(𝜽, 𝜹)

- parameter 𝜽 includes initial conditions

Solving MIQP takes 2 steps:

1. Build feasible set 𝑉(𝜽) and cost map v(𝜽, 𝜹)

2. Traverse the cost map

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition

Figure 5.6, Chapter 5 Duality, Boyd, Stephen P., 

and Lieven Vandenberghe. Convex optimization
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However, parametrically solve the problem still requires too many cutting planes

- Active sets =* extreme points and rays in dual cone ~ cutting planes

Instead, we start from an empty set of cuts, then pick up the necessary cuts “on the fly” 

This technique is called Benders decomposition

- The part that provides binary sequences using 𝑉(𝜽), v(𝜽, 𝜹) is called Benders master problem

- The QP with fixed mode sequence δ is called Benders subproblem

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition

Master Problem 

(MIP)

Mode sequence δ

Sub- Problem 

(QP)

Cutting planes

QP feasible: Optimality cuts QP Infeasible: Feasibility cuts 

𝜹𝑓𝑒𝑎𝑠
𝜹𝑖𝑛𝑓𝑒𝑎𝑠

*Ignore degeneracy 
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Benders decomposition is an old algorithm [1,2]

I propose a few new techniques to improve it:

- Continual learning and warm-start

- Fast cold-start using dynamic model

- Customized algorithm for master problem leveraging on sparsity of feasibility cuts

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition

[1] J. Benders, “Partitioning procedures for solving mixed-variables programming problems” Numerische mathematik, vol. 4, no. 1, pp. 

238–252, 1962.

[2] A. M. Geoffrion, “Generalized benders decomposition,” Journal of optimization theory and applications, vol. 10, pp. 237–260, 1972.
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Continual learning and warm-start 

Observation: A small amount of cuts can already do decent warm-starts

Great if this procedure can happen fast (before the system goes unstable)

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition

Benders Master 

Problem (MIP)
Benders Sub-

Problem (QP)

Benders Master 

Problem (MIP)
Benders Sub-

Problem (QP)

𝜽[𝑡1]

Cuts 

Cuts 

u[𝑡1]

u[𝑡2]

Plant

Plant

Use previous cuts for a new problem

𝜽[𝑡2]

𝜽[𝑡2]

𝜽[𝑡3]

𝛌𝜽[𝑡1]+𝛖𝜹 ≥0

𝛌𝜽[𝑡2]+𝛖𝜹 ≥0

Relies on the fast that dual cone 

(hence 𝛌,𝛖) is independent of 𝜽
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Fast cold-start using dynamic model

- Intuitively, the failure modes in the future time can also be informative in the current time

- This is done by shifting feasibility cuts backward in time

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition

𝑥

𝑦

𝒙0

𝒙𝑔𝑜𝑎𝑙

x

𝑥

𝑦

𝛿
𝒙1

𝒙2
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Customized Benders master problem solver utilizing sparsity of feasibility cuts

- A lot of master problems can be resolved in the presolve stage if Gurobi is used

- Greedy approach to solve binary variables step-by-step

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition

min +𝑪2𝜹[𝑡2] + 𝑪3𝜹[𝑡3]

≥ 𝑺10
+𝑺22𝜹[𝑡2] ≥ 𝑺20
+𝑺32𝜹 𝑡2 + 𝑺33𝜹[𝑡3] ≥ 𝑺30

s. t. 𝑺11𝜹 𝑡1
𝑺21𝜹 𝑡1
𝑺31𝜹 𝑡1

𝑪1𝜹[𝑡1]
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Customized Benders master problem solver utilizing sparsity of feasibility cuts

- A lot of master problems can be resolved in the presolve stage if Gurobi is used

- Greedy approach to solve binary variables step-by-step

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition

If 𝜹[𝑡2] becomes infeasible, go back to 𝜹[𝑡1] and find another solution

At the scale (N<20) we tested, it is effective

- Won’t be effective for long horizon problems, or controls that require taking “detour”

s. t.

min 𝑪2𝜹[𝑡2] + 𝑪3𝜹[𝑡3]

𝑺22 𝜹[𝑡2] ≥ 𝑺20
′

𝑺32 𝜹 𝑡2 + 𝑺33 𝜹[𝑡3] ≥ 𝑺30
′
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Experiments

Computer:  Intel Core i7-12800H × 20 laptop with 16GB memory

Proposed Benders MIQP solver: coded in Python, subproblem QPs solved by Gurobi

Benchmark: Use Gurobi 10.03 to directly solve MIQP

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition
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Obstacle avoidance

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition

# of obstacles 3 6 9 12

Time horizon (N) 9 12 15 20

# of binaries 54 144 270 480

Mass 𝑚 = 1
Random force 

disturbance 𝑓 = 𝑁(0,5)
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Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition

3 obstacles

6 obstacles

9 obstacles

Stored feas. 
cuts: ~50
Stored opt. 
cuts: ~10

Stored feas. 
cuts: ~120
Stored opt. 
cuts: ~15

Stored feas. 
cuts: ~200
Stored opt. 
cuts: ~20
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- GBD solver picks most of the feasibility cuts in the first few problems

- Better data efficiency than CoCo (Cauligi, Abhishek, et al) 

- Speed competitive to Gurobi

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition

12 obstacles
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Cart-pole with moving soft walls

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition

Time horizon (N) 10 15

# of binaries 20 30

Mass cart = 1, cart = 0.4, pole length = 0.6
Random torque disturbance τ = 𝑁(0,8)



UCLA© 2023

Solving speed during the first contact (N=10)

- GBD solver picks most of the feasibility cuts in the first problem

- Without warm-start, much slower

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition
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Solving speed during long time (N=10, 20 binaries)

- Overall speed 2-3 times faster than Gurobi

- Better data efficiency than CoCo (Cauligi, Abhishek, et al)

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition
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Solving speed during long time (N=15, 30 binaries)

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition
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Real interesting things happen when this technique is combined with branching heuristics designed offline

1. Branching heuristics designed offline helps to cold-start

2. This technique can be used with the relaxation-based methods (e.g. GCS)

3. Fast learning helps generalization to out-of-distribution cases

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition
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Using Benders cuts with graph of convex sets 

- Example taken from section 9.3 in your GCS paper [1])

- GCS formulation scales up well, Benders cuts quickly improve its optimality

Fast and Continual Learning for Hybrid Control Policies using Generalized Benders Decomposition

[1] Marcucci, Tobia, et al. "Shortest paths in graphs of convex sets." arXiv preprint arXiv:2101.11565 (2021).
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END
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